MATH 7382: TOPICS IN PROBABILITY PROBLEM SET 2

DUE: 10/16/12

(* means harder optional exercises)

- 1. (a) Show that the finite-dimensional unitary group U(N) is compact in the usual topology.
- (b) Show that the infinite-dimensional unitary group $U(\infty) = \bigcup_{N=1}^{\infty} U(N)$ with the inductive limit topology (= natural topology of convergence of all matrix elements) is not compact.
 - (c)* Show that $U(\infty)$ is not locally compact.
- 2. In the algebra of Laurent polynomials $\mathbb{C}\left[u_1^{\pm 1},\ldots,u_N^{\pm 1}\right]$ (as well as in the subalgebra of symmetric polynomials LSym(N)) consider the automorphism

$$u_i \mapsto u_i^{-1}$$
, for all $i = 1, \dots, N$.

Show that $s_{\lambda}(u^{-1}) = s_{\lambda^*}(u)$, where

$$\lambda^* = (-\lambda_N, -\lambda_{N-1}, \dots, -\lambda_2, -\lambda_1).$$

3. [elementary and complete homogeneous symmetric polynomials] Let $e_k(u_1, \ldots, u_N)$, $k = 1, \ldots, N$, be the kth elementary symmetric polynomial: $e_k(u_1, \ldots, u_N) = \sum_{1 \leq i_1 < \ldots < i_k \leq N} u_{i_1} \ldots u_{i_k}$.

Also, let $h_k(u_1, \ldots, u_N)$, $k = 1, 2, \ldots$, be the kth complete homogeneous symmetric polynomial: $h_k(u_1, \ldots, u_N) = \sum_{1 \leq i_1 \leq \ldots \leq i_k \leq N} u_{i_1} \ldots u_{i_k}$.

(a) Show that $e_k(u_1, \ldots, u_N) = s_{(1, \ldots, 1, 0, \ldots, 0)}(u_1, \ldots, u_N)$;

- (b) Show that $h_k(u_1, ..., u_N) = s_{(k,0,...,0)}(u_1, ..., u_N)$.

Hint: You may use the branching rule for the Schur polynomials in one of the two ways. (1) Write $e_k(u_1,\ldots,u_{N-1},1)$ in terms of e_i 's in variables (u_1,\ldots,u_{N-1}) ; and same for h_k 's. Compare this with the branching rule for Schur polynomials. (2) Use combinatorial formula for Schur polynomials directly.

4. [Schur polynomials in two variables; cf. Problem 2 in the first Problem Set] Let N=2, and consider the Schur polynomials in two variables:

$$s_{(a,b)}(x,y) = \frac{x^{a+1}y^b - x^by^{a+1}}{x - y}, \quad a \ge b \ge 0.$$

Write this Schur polynomial as a linear combination of the symmetrized monomials

$$m_{(c,d)}(x,y) := \begin{cases} x^c y^d + x^d y^c, & c > d \ge 0; \\ x^c y^c, & c = d \ge 0. \end{cases}$$

Explanation: In this way you get the Kostka numbers $K_{\lambda\mu}$ which are defined as

$$s_{\lambda} = \sum_{\mu} K_{\lambda\mu} m_{\mu}$$

for all λ 's and μ 's with two parts.

¹Which consists of all complex $N \times N$ matrices U with condition $UU^* = E$; here E is the identity matrix and U^* means transposed complex conjugate matrix.

5. Show that the number dim λ of standard Young tableaux of shape λ (λ is a nonnegative signature)² is equal to the coefficient by $x_1^{\lambda_1+N-1}x_2^{\lambda_2+N-2}\dots x_N^{\lambda_N}$ in the polynomial

$$(x_1 + \ldots + x_N)^N \prod_{1 \le i < j \le N} (x_i - x_j),$$

where N is large enough $(N \ge \ell(\lambda))$.

Hint: use the corollary of the Pieri formula: $p_1^K = \sum_{\lambda \in \mathbb{GT}^+: |\lambda| = K} \dim \lambda \cdot s_{\lambda}$, and multiply by the Vandermonde.

6. [Plancherel specialization of the algebra of symmetric functions] Let us consider a specialization of the algebra of symmetric functions $Sym = \mathbb{R}[p_1, p_2, \ldots]$ (i.e. algebra morphism $Sym \to \mathbb{R}$) defined on the multiplicative generators (power sums) p_k as

$$p_1 \to 1, \qquad p_2, p_3, p_4, \ldots \to 0.$$

- (a) Show that under this specialization e_k and h_k map to 1/k!. **Hint:** use relations between the generating functions of p's, e's and h's.
- (b) Show that s_{λ} maps to $\det \left[\frac{1}{(\lambda_i i + j)!}\right]_{i,j=1}^N$ (for any $N \geq \ell(\lambda)$). **Hint:** use Jacobi-Trudi identity.
 - (c)* In fact, the image of s_{λ} is equal to dim $\lambda/|\lambda|!$.
- 7. Let λ be represented by a Young diagram (where λ is a nonnegative signature). For example, if $\lambda = (4,3,1)$, then the corresponding diagram looks as

Let d be the number of boxes on the diagonal of λ (d=2 in the above example), and let n be the total number of boxes in the diagram (n=8 in the above example). Show that $d \leq \sqrt{n}$.

²Recall also that dim λ is the dimension of the irreducible representation of $\mathfrak{S}(|\lambda|)$ corresponding to λ .