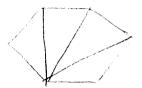
COMBINATORICS. PROBLEM SET 10. ENUMERATION OF TREES

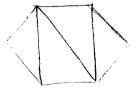
SEMINAR PROBLEMS

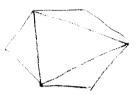
Problem 10.1. Find the number of non-directed graphs on n vertices with simple edges and no loops.

Problem 10.2. What is the number of rooted plane trees with n + 1 vertices?

Problem 10.3. Consider the following three triangulations of the hexagon:







Assume we are rotating the hexagon by 60°, 120°, How many other different triangulations each picture produces?

Problem 10.4. How many triangulations of the (n+2)-gon with labeled vertices are? What about the (n+2)-gon with unlabeled vertices? Let the latter number of triangulations be R_n . Give estimates for R_n of the form $a_n \leq R_n \leq b_n$, such that b_n/a_n has a polynomial asymptotics.

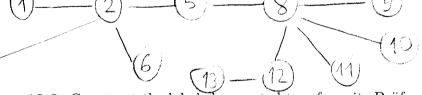
Problem 10.5. Give a recursive definition of

- *) a rooted tree
- *) a labeled rooted tree
- *) a plane tree
- *) a labeled plane tree

Problem 10.6 (Cayley's formula). Let T_n be the number of labeled rooted trees on n vertices, and $T(x) := \sum_{n \ge 1} T_n x^n / n!$. Show that $T(x) = xe^{T(x)}$. Applying the Lagrange inversion, show that $T_n = n^{n-1}$.

(7) Pr

Problem 10.7. Compute the Prüfer code of the following tree: (4) (5) (5) (6)



Problem 10.8. Construct the labeled unrooted tree from its Prüfer code (3, 1, 5, 3, 5, 3, 2, 1, 10).

Problem 10.9. Obtain Problem 10.6 using Prüfer codes.

Problem 10.10. From Problem 10.6 deduce the number of unrooted labeled trees on n vertices.

Problem 10.11.

Problem 10.12. Generalize the consruction of a Prüfer code for labeled rooted forests.

Homework

Problem 10.13 (1). Find the number of non-directed graphs on n vertices with simple edges (loops allowed).

Problem 10.14 (1). Find the number of directed graphs on n vertices with simple edges (loops allowed).

Problem 10.15 (1). What is the number of rooted plane trees with n+2 vertices such that the degree of the root is one?

Problem 10.16 (1). How many different cyclic orders are on n elements? (e.g., for n = 3 there are two such orders: 123 and 132).

Problem 10.17 (1). Draw all possible (unlabeled, unrooted) trees on n vertices, n = 1, 2, 3, 4, 5, 6.

Problem 10.19. Construct the labeled unrooted trees from their Prüfer codes: a) (1) (1, 2, 3, 4, 5, 6, 1, 2, 3), b) (1) (3, 5, 3, 5, 3, 5, 3, 5).

Problem 10.20 (3). Use the Prüfer code construction to show that the number of labeled unrooted trees on n vertices with degrees of vertices d_1, \ldots, d_n (d_j is the degree of the jth vertex) is $\frac{(n-2)!}{(d_1-1)! \ldots (d_n-1)!}$. (Hint: think of what Prüfer sequences can occur from such trees.)

Problem 10.21 (3). Consider bipartite trees (labeled unrooted), i.e., trees in which vertices are of two types: black vertices with labels $1, \ldots, n_b$, and white vertices with labels $n_b + 1, \ldots, n_b + n_w$. Each edge must connect a white and a black vertex. Show that the number of such bipartite trees is $n_w^{n_b-1}n_b^{n_w-1}$. (Argue similarly to the previous problem.)

Problem 10.22 (3). Take a rooted labeled forest on n vertices. Take roots of each component and connect them to a new vertex with label n+1. Observe that this will be an unrooted labeled tree on n+1 vertices. Deduce that the number of rooted labeled forests on n vertices is $(n+1)^{n-1}$.

SUPPLEMENTARY PROBLEM

Problem 10.23 (5). Deduce that the number of labeled rooted forests on n vertices with k components such that the root of the ith component has label i, is kn^{n-k-1} (use Problem 10.12).