COMBINATORICS. PROBLEM SET 8. DIRICHLET GF'S

SEMINAR PROBLEMS

Problem 8.1. Find a quick way of writing out all prime numbers from 2 to a given number N.

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 is the Riemann zeta function.

Problem 8.2. Show that $\zeta(s) = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$.

Let $f: \mathbb{N} \to \mathbb{C}$ be a function of a natural number (such functions are called *arithmetic*). (Equivalently, we can speak of the sequence $\{f(1), f(2), f(3), \dots\}$.) Associate to f the *Dirichlet GF*: $A(s) := \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$.

Problem 8.3. Let A(s) and B(s) be the Dirichlet GF's for two arithmetic functions f and g, respectively. Find (in terms of f and g) the sequence whose Dirichlet GF is A(s)B(s).

Problem 8.4. Let for $n \in \mathbb{N}$ by d(n) denote the number of divisors of n. E.g., d(6) = 4. Find the Dirichlet GF for d(n).

An arithmetic function f is called *multiplicative* iff f(ab) = f(a)f(b) for any relatively prime a, b.

Problem 8.5. Show that a multiplicative arithmetic function is completely defined by its values on powers of prime numbers.

Problem 8.6. Show that and arithmetic function f is multiplicative iff the corresponding Dirichlet GF can be represented in the following form: $\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p \text{ prime}} (1 + f(p)p^{-s} + f(p^2)p^{-2s} + \dots).$ (In fact, this identity for multiplicative arithmetic functions is useful in many of the homework problems.)

Problem 8.7. Let $\mu(n)$ be the arithmetic function with Dirichlet GF which is the inverse of the Riemann zeta function: $\frac{1}{\zeta(s)} = \prod_{p \text{ prime}} (1 - p^{-s})$. Find a $\mu(n)$ for all n in an explicit form.

Problem 8.8. Use the inclusion-exclusion principle to show that $\left(\sum_{n=1}^{\infty} \frac{1}{n^s}\right) \left(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}\right) = 1.$

Problem 8.9. Use Dirichlet GF's to prove the Möbius inversion theorem:

$$f(n) = \sum_{d: d|n} g(d)$$
 \Leftrightarrow $g(n) = \sum_{d: d|n} \mu(\frac{n}{d}) f(d).$

for any arithmetic functions f and g. (In fact, this theorem is useful in many of the homework problems.)

Problem 8.10. Prove the inclusion-exclusion principle: B is a finite set, each element can possess or not possess some of the properties c_1, \ldots, c_m . Let $N(c_{i_1}, \ldots, c_{i_k})$ be the number of elements each of which possesses the properties c_{i_1}, \ldots, c_{i_k} . Let also N(1) = #B. Then the number of elements in B which do not possess any of the properties c_1, \ldots, c_m , is

$$N(1) - N(c_1) - \cdots - N(c_m) + N(c_1, c_2) + \cdots + N(c_{m-1}, c_m) - N(c_1, c_2, c_3) - \cdots$$

Problem 8.11. Show that the Dirichlet GF's of nonzero multiplicative arithmetic functions form a group with respect to the multiplication of Dirichlet GF's.

Problem 8.12. A ticket has a 6-digit number abcdef. Ticket is lucky iff a + b + c = d + e + f. Find (using the inclusion-exclusion principle) the total number of lucky tickets. (**Hint** 1: by using the bijection $abcdef \rightarrow abc(9-d)(9-e)(9-f)$, conclude that the number of lucky tickets is the same as the number of tickets with sum of the digits equal to 27. **Hint** 2: assume that $a, b, c, d, e, f \ge 0$ and use the inclusion-exclusion principle with c_i being the property that the *i*th number in a ticket is ≥ 10 .)

Problem 8.13. A disorder on the set $\{1, ..., n\}$ is a permutation σ of $\{1, ..., n\}$ such that $\sigma(k) \neq k$ for any k. Find (using the inclusion-exclusion principle) the number of disorders on $\{1, ..., n\}$. (**Hint**: c_i is the property of a permutation to fix i, i.e., $\sigma(i) = i$.)

Homework

Problem 8.14. Use the inclusion-exclusion principle to show that

$$\max(a_1,\ldots,a_n) = a_1 + \cdots + a_n - \min(a_1,a_2) - \cdots - \min(a_{n-1},a_n) + \min(a_1,a_2,a_3) + \cdots + (-1)^n \min(a_1,\ldots,a_n).$$
(Specify the properties c_i explicitly.)

Problem 8.15. Let $\varphi(n)$ be the number of numbers among $\{1,\ldots,n-1\}$ which are relatively prime to n. Show that for $n=p_1^{k_1}\ldots p_m^{k_m}$ (p_i distinct primes) we have $\varphi(n)=n(1-\frac{1}{p_1})\ldots(1-\frac{1}{p_m})$. Use the inclusion-exclusion principle. (Specify the properties c_i explicitly.)

Problem 8.16. From the above problem, show that the arithmetic function φ is multiplicative.

Problem 8.17. Find the Dirichlet GF for φ .

Problem 8.18. How many of the following n^2 fractions

$$1/1$$
 $1/2$ $1/3$... $1/n$ $2/1$ $2/2$ $2/3$... $2/n$... $n/1$ $n/2$ $n/3$... n/n

are irreducible? Use the inclusion-exclusion principle. (Specify the properties c_i explicitly.)

Problem 8.19. Let $\sigma(n)$ be the sum of all the divisors of n (n included), e.g., $\sigma(6) = 12$. Show that this is a multiplicative arithmetic function.

Problem 8.20. Find the Dirichlet GF for the arithmetic function σ .

Problem 8.21. Show that $\sum_{\delta: \delta \mid n} \mu(\delta) d(\frac{n}{\delta}) = 1$ for $n \geq 1$. (Here μ and d are defined above.)